FIR Windowed Filter Design Program

Return to Main Software Page

C
C-----------------------------------------------------------------------
C MAIN PROGRAM: WINDOW DESIGN OF LINEAR PHASE, LOWPASS, HIGHPASS
C               BANDPASS, AND BANDSTOP FIR DIGITAL FILTERS
C AUTHOR:       LAWRENCE R. RABINER AND CAROL A. MCGONEGAL
C               BELL LABORATORIES, MURRAY HILL, NEW JERSEY, 07974
C MODIFIED JAN. 1978 BY DOUG PAUL, MIT LINCOLN LABORATORIES
C TO INCLUDE SUBROUTINES FOR OBTAINING FILTER BAND EDGES AND RIPPLES
C
C INPUT:        NF IS THE FILTER LENGTH IN SAMPLES
C                   3 <= NF <= 1024
C
C               ITYPE IS THE WINDOW TYPE
C                   ITYPE = 1     RECTANGULAR WINDOW
C                   ITYPE = 2     TRIANGULAR WINDOW
C                   ITYPE = 3     HAMMING WINDOW
C                   ITYPE = 4     GENERALIZED HAMMING WINDOW
C                   ITYPE = 5     HANNING WINDOW
C                   ITYPE = 6     KAISER (I0-SINH) WINDOW
C                   ITYPE = 7     CHEBYSHEV WINDOW
C
C               JTYPE IS THE FILTER TYPE
C                   JTYPE = 1     LOWPASS FILTER
C                   JTYPE = 2     HIGHPASS FILTER
C                   JTYPE = 3     BANDPASS FILTER
C                   JTYPE = 4     BANDSTOP FILTER
C
C               FC IS THE NORMALIZED CUTOFF FREQUENCY
C                   0 <= FC <= 0.5
C               FL AND FH ARE THE NORMALIZED FILTER CUTOFF FREQUENCIES
C                   0 <= FL <= FH <= 0.5
C               IWP OPTIONALLY PRINTS OUT THE WINDOW VALUES
C                   IWP = 0  DO NOT PRINT
C                   IWP = 1  PRINT
C               IMD REQUESTS ADDITIONAL RUNS
C                   IMD = 1   NEW RUN
C                   IMD = 0   TERMINATES PROGRAM
C-----------------------------------------------------------------------
C
      DIMENSION W(512), G(512)
      INTEGER OTCD1, OTCD2
C
      PI = 4.0*ATAN(1.0)
      TWOPI = 2.0*PI
C
C DEFINE I/O DEVICE CODES
C INPUT: INPUT TO THIS PROGRAM IS USER-INTERACTIVE
C        THAT IS - A QUESTION IS WRITTEN ON THE USER
C        TERMINAL (OTCD1) AND THE USER TYPES IN THE ANSWER.
C
C OUTPUT: ALL OUTPUT IS WRITTEN ON THE STANDARD
C         OUTPUT UNIT (OTCD2)
C
      INCOD = I1MACH(1)
      OTCD1 = I1MACH(4)
      OTCD2 = I1MACH(2)
C
C INPUT THE FILTER LENGTH(NF), WINDOW TYPE(ITYPE) AND FILTER TYPE(JTYPE)
C
  10  WRITE (OTCD1,9999)
9999  FORMAT (44H SPECIFY FILTER LENGTH(I4), WINDOW TYPE(I2),, 6H FILTE,
     *    10HR TYPE(I2))
      READ (INCOD,9998) NF, ITYPE, JTYPE
9998  FORMAT (I4, I2, I2)
      IF (NF.LE.1024) GO TO 30
  20  WRITE (OTCD2,9997) NF
9997  FORMAT (4H NF=, I4, 17H IS OUT OF BOUNDS)
      GO TO 10
  30  IF (ITYPE.NE.7 .AND. NF.LT.3) GO TO 20
      IF (ITYPE.EQ.7 .AND. (NF.EQ.1 .OR. NF.EQ.2)) GO TO 20
C
C N IS HALF THE LENGTH OF THE SYMMETRIC FILTER
C
      N = (NF+1)/2
      IF (JTYPE.NE.1 .AND. JTYPE.NE.2) GO TO 50
C
C FOR THE IDEAL LOWPASS OR HIGHPASS DESIGN - INPUT FC
C
  40  WRITE (OTCD1,9996)
9996  FORMAT (38H SPECIFY IDEAL CUTOFF FREQUENCY(F14.7))
      READ (INCOD,9993) FC
      IF (FC.GT.0.0 .AND. FC.LT.0.5) GO TO 60
      WRITE (OTCD1,9995) FC
9995  FORMAT (13H VALUE OF FC=, F14.7, 29H IS OUT OF BOUNDS, REENTER DA,
     *    2HTA)
      GO TO 40
C
C FOR THE IDEAL BANDPASS OR BANDSTOP DESIGN - INPUT FL AND FH
C
  50  WRITE (OTCD1,9994)
9994  FORMAT (43H SPECIFY LOWER AND UPPER CUTOFF FREQUENCIES, 7H(2F14.7,
     *    1H))
      READ (INCOD,9993) FL, FH
9993  FORMAT (2F14.7)
      IF (FL.GT.0.0 .AND. FL.LT.0.5 .AND. FH.GT.0.0 .AND. FH.LT.0.5
     *    .AND. FH.GT.FL) GO TO 60
      IF (FL.LT.0. .OR. FL.GT.0.5) WRITE (OTCD1,9995) FL
      IF (FH.LT.0. .OR. FH.GT.0.5) WRITE (OTCD1,9995) FH
      IF (FH.LT.FL) WRITE (OTCD1,9992) FH, FL
9992  FORMAT (4H FH=, F14.7, 20H IS SMALLER THAN FL=, F14.7, 8H REENTER,
     *    5H DATA)
      GO TO 50
  60  IF (ITYPE.NE.7) GO TO 70
C
C INPUT FOR CHEBYSHEV WINDOW--2 OF THE 3 PARAMETERS NF, DPLOG, AND DF
C MUST BE SPECIFIED, WHERE DPLOG IS THE DESIRED FILTER RIPPLE(DB SCALE),
C DF IS THE TRANSITION WIDTH (NORMALIZED) OF THE FILTER,
C AND NF IS THE FILTER LENGTH.  THE UNSPECIFIED PARAMETER
C IS READ IN WITH THE ZERO VALUE.
C
      WRITE (OTCD1,9991)
9991  FORMAT (46H SPECIFY CHEBYSHEV RIPPLE IN DB (F14.7) AND/OR,
     *24H TRANSITION WIDTH(F14.7))
      READ (INCOD,9993) DPLOG, DF
      DP = 10.0**(-DPLOG/20.0)
      CALL CHEBC(NF, DP, DF, N, X0, XN)
C
C IEO IS AN EVEN, ODD INDICATOR, IEO = 0 FOR EVEN, IEO = 1 FOR ODD
C
  70  IEO = MOD(NF,2)
      IF (IEO.EQ.1 .OR. JTYPE.EQ.1 .OR. JTYPE.EQ.3) GO TO 80
      WRITE (OTCD1,9990)
9990  FORMAT (48H NF MUST BE ODD INTEGER FOR HP OR BS FILTERS--NF,
     *    24H IS BEING INCREASED BY 1)
      NF = NF + 1
      N = (1+NF)/2
      IEO = 1
  80  CONTINUE
C
C COMPUTE IDEAL (UNWINDOWED) IMPULSE RESPONSE FOR FILTER
C
      C1 = FC
      IF (JTYPE.EQ.3 .OR. JTYPE.EQ.4) C1 = FH - FL
      IF (IEO.EQ.1) G(1) = 2.*C1
      I1 = IEO + 1
      DO 90 I=I1,N
        XN = I - 1
        IF (IEO.EQ.0) XN = XN + 0.5
        C = PI*XN
        C3 = C*C1
        IF (JTYPE.EQ.1 .OR. JTYPE.EQ.2) C3 = 2.*C3
        G(I) = SIN(C3)/C
        IF (JTYPE.EQ.3 .OR. JTYPE.EQ.4) G(I) = G(I)*2.*COS(C*(FL+FH))
  90  CONTINUE
C
C COMPUTE A RECTANGULAR WINDOW
C
      IF (ITYPE.EQ.1) WRITE (OTCD2,9989) NF
9989  FORMAT (23H RECTANGULAR WINDOW-NF=, I4)
      DO 100 I=1,N
        W(I) = 1.
 100  CONTINUE
C
C DISPATCH ON WINDOW TYPE
C
      GO TO (200, 110, 120, 140, 150, 160, 170), ITYPE
C
C TRIANGULAR WINDOW
C
 110  CALL TRIANG(NF, W, N, IEO)
      WRITE (OTCD2,9988) NF
9988  FORMAT (22H TRIANGULAR WINDOW-NF=, I4)
      GO TO 180
C
C HAMMING WINDOW
C
 120  ALPHA = 0.54
      WRITE (OTCD2,9987) NF
9987  FORMAT (19H HAMMING WINDOW-NF=, I4)
 130  BETA = 1. - ALPHA
      CALL HAMMIN(NF, W, N, IEO, ALPHA, BETA)
      WRITE (OTCD2,9986) ALPHA
9986  FORMAT (7H ALPHA=, F14.7)
      GO TO 180
C
C GENERALIZED HAMMING WINDOW
C FORM OF WINDOW IS W(M)=ALPHA+BETA*COS((TWOPI*M)/(NF-1))
C BETA IS AUTOMATICALLY SET TO 1.-ALPHA
C READ IN ALPHA
C
 140  WRITE (OTCD1,9985)
9985  FORMAT (45H SPECIFY ALPHA FOR GENERALIZED HAMMING WINDOW)
      READ (INCOD,9993) ALPHA
      WRITE (OTCD2,9984) NF
9984  FORMAT (31H GENERALIZED HAMMING WINDOW-NF=, I4)
      GO TO 130
C
C HANNING WINDOW
C
 150  ALPHA = 0.5
      WRITE (OTCD2,9983) NF
9983  FORMAT (19H HANNING WINDOW-NF=, I4)
C
C INCREASE NF BY 2 AND N BY 1 FOR HANNING WINDOW SO ZERO
C ENDPOINTS ARE NOT PART OF WINDOW
C
      NF = NF + 2
      N = N + 1
      GO TO 130
C
C KAISER (I0-SINH) WINDOW
C NEED TO SPECIFY PARAMETER ATT=STOPBAND ATTENUATION IN DB
C
 160  WRITE (OTCD1,9982)
9982  FORMAT (33H SPECIFY ATTENUATION IN DB(F14.7), 16H FOR KAISER WIND,
     *    2HOW)
      READ (INCOD,9993) ATT
      IF (ATT.GT.50.) BETA = 0.1102*(ATT-8.7)
      IF (ATT.GE.20.96 .AND. ATT.LE.50.) BETA = 0.58417*(ATT-20.96)**
     *    0.4 + 0.07886*(ATT-20.96)
      IF (ATT.LT.20.96) BETA = 0.
      CALL KAISER(NF, W, N, IEO, BETA)
      WRITE (OTCD2,9981) NF
9981  FORMAT (18H KAISER WINDOW-NF=, I4)
      WRITE (OTCD2,9980) ATT, BETA
9980  FORMAT (6H  ATT=, F14.7, 7H  BETA=, F14.7)
      GO TO 180
C
C CHEBYSHEV WINDOW
C
 170  CALL CHEBY(NF, W, N, IEO, DP, DF, X0, XN)
      WRITE (OTCD2,9979) NF
9979  FORMAT (21H CHEBYSHEV WINDOW-NF=, I4)
      WRITE (OTCD2,9978) DP, DF
9978  FORMAT (4H DP=, F14.7, 5H  DF=, F14.7)
C
C WINDOW IDEAL FILTER RESPONSE
C CHANGE BACK NF AND N FOR HANNING WINDOW
C
 180  IF (ITYPE.EQ.5) NF = NF - 2
      IF (ITYPE.EQ.5) N = N - 1
      DO 190 I=1,N
        G(I) = G(I)*W(I)
 190  CONTINUE
C
C PRINT OUT RESULTS
C
 200  WRITE (OTCD1,9977)
9977  FORMAT (36H PRINT OUT WINDOW VALUES(1=YES,0=NO))
      READ (INCOD,9976) IWP
9976  FORMAT (I1)
      IF (IWP.EQ.0) GO TO 220
      WRITE (OTCD2,9975)
9975  FORMAT (14H WINDOW VALUES)
      DO 210 I=1,N
        J = N + 1 - I
        K = NF + 1 - I
        WRITE (OTCD2,9974) I, W(J), K
9974    FORMAT (10X, 3H W(, I3, 2H)=, E15.8, 4H =W(, I4, 1H))
 210  CONTINUE
 220  IF (JTYPE.EQ.1) WRITE (OTCD2,9973)
9973  FORMAT (26H **LOWPASS FILTER DESIGN**)
      IF (JTYPE.EQ.2) WRITE (OTCD2,9972)
9972  FORMAT (27H **HIGHPASS FILTER DESIGN**)
      IF (JTYPE.EQ.3) WRITE (OTCD2,9971)
9971  FORMAT (27H **BANDPASS FILTER DESIGN**)
      IF (JTYPE.EQ.4) WRITE (OTCD2,9970)
9970  FORMAT (27H **BANDSTOP FILTER DESIGN**)
      IF (JTYPE.EQ.1) WRITE (OTCD2,9969) FC
9969  FORMAT (22H IDEAL LOWPASS CUTOFF=, F14.7)
      IF (JTYPE.EQ.2) WRITE (OTCD2,9968) FC
9968  FORMAT (23H IDEAL HIGHPASS CUTOFF=, F14.7)
      IF (JTYPE.EQ.3 .OR. JTYPE.EQ.4) WRITE (OTCD2,9967) FL, FH
9967  FORMAT (26H IDEAL CUTOFF FREQUENCIES=, 2F14.7)
      IF (JTYPE.EQ.1 .OR. JTYPE.EQ.3) GO TO 240
      DO 230 I=2,N
        G(I) = -G(I)
 230  CONTINUE
      G(1) = 1.0 - G(1)
C
C WRITE OUT IMPULSE RESPONSE
C
 240  DO 250 I=1,N
        J = N + 1 - I
        K = NF + 1 - I
        WRITE (OTCD2,9966) I, G(J), K
9966    FORMAT (10X, 3H H(, I3, 2H)=, E15.8, 4H =H(, I4, 1H))
 250  CONTINUE
      CALL FLCHAR(NF, ITYPE, JTYPE, FC, FL, FH, N, IEO, G, OTCD2)
      WRITE (OTCD2,9965)
9965  FORMAT (1H /1H /1H /1H )
      WRITE (OTCD2,9964)
9964  FORMAT (1H1)
      WRITE (OTCD1,9963)
9963  FORMAT (26H MORE DATA(1=YES,0=NO)(I1))
      READ (INCOD,9962) IMD
9962  FORMAT (I1)
      IF (IMD.EQ.1) GO TO 10
      STOP
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  TRIANG
C TRIANGULAR WINDOW
C-----------------------------------------------------------------------
C
      SUBROUTINE TRIANG(NF, W, N, IEO)
C
C  NF = FILTER LENGTH IN SAMPLES
C   W = WINDOW COEFFICIENTS FOR HALF THE WINDOW
C   N = HALF WINDOW LENGTH=(NF+1)/2
C IEO = EVEN - ODD INDICATION--IEO=0 FOR NF EVEN
C
      DIMENSION W(1)
      FN = N
      DO 10 I=1,N
        XI = I - 1
        IF (IEO.EQ.0) XI = XI + 0.5
        W(I) = 1. - XI/FN
  10  CONTINUE
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  HAMMIN
C GENERALIZED HAMMING WINDOW ROUTINE
C WINDOW IS W(N) = ALPHA + BETA * COS( TWOPI*(N-1) / (NF-1) )
C-----------------------------------------------------------------------
C
      SUBROUTINE HAMMIN(NF, W, N, IEO, ALPHA, BETA)
C
C    NF = FILTER LENGTH IN SAMPLES
C     W = WINDOW ARRAY OF SIZE N
C     N = HALF LENGTH OF FILTER=(NF+1)/2
C   IEO = EVEN ODD INDICATOR--IEO=0 IF NF EVEN
C ALPHA = CONSTANT OF WINDOW
C  BETA = CONSTANT OF WINDOW--GENERALLY BETA=1-ALPHA
C
      DIMENSION W(1)
      PI2 = 8.0*ATAN(1.0)
      FN = NF - 1
      DO 10 I=1,N
        FI = I - 1
        IF (IEO.EQ.0) FI = FI + 0.5
        W(I) = ALPHA + BETA*COS((PI2*FI)/FN)
  10  CONTINUE
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  KAISER
C KAISER WINDOW
C-----------------------------------------------------------------------
C
      SUBROUTINE KAISER(NF, W, N, IEO, BETA)
C
C   NF = FILTER LENGTH IN SAMPLES
C    W = WINDOW ARRAY OF SIZE N
C    N = FILTER HALF LENGTH=(NF+1)/2
C  IEO = EVEN ODD INDICATOR--IEO=0 IF NF EVEN
C BETA = PARAMETER OF KAISER WINDOW
C
      DIMENSION W(1)
      REAL INO
      BES = INO(BETA)
      XIND = FLOAT(NF-1)*FLOAT(NF-1)
      DO 10 I=1,N
        XI = I - 1
        IF (IEO.EQ.0) XI = XI + 0.5
        XI = 4.*XI*XI
        W(I) = INO(BETA*SQRT(1.-XI/XIND))
        W(I) = W(I)/BES
  10  CONTINUE
      RETURN
      END
C
C-----------------------------------------------------------------------
C FUNCTION:  INO
C BESSEL FUNCTION FOR KAISER WINDOW
C-----------------------------------------------------------------------
C
      REAL FUNCTION INO(X)
      Y = X/2.
      T = 1.E-08
      E = 1.
      DE = 1.
      DO 10 I=1,25
        XI = I
        DE = DE*Y/XI
        SDE = DE*DE
        E = E + SDE
        IF (E*T-SDE) 10, 10, 20
  10  CONTINUE
  20  INO = E
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  CHEBC
C SUBROUTINE TO GENERATE CHEBYSHEV WINDOW PARAMETERS WHEN
C ONE OF THE THREE PARAMETERS NF,DP AND DF IS UNSPECIFIED
C-----------------------------------------------------------------------
C
      SUBROUTINE CHEBC(NF, DP, DF, N, X0, XN)
C
C NF = FILTER LENGTH (IN SAMPLES)
C DP = FILTER RIPPLE (ABSOLUTE SCALE)
C DF = NORMALIZED TRANSITION WIDTH OF FILTER
C  N = (NF+1)/2 = FILTER HALF LENGTH
C X0 = (3-C0)/(1+C0) WITH C0=COS(PI*DF) = CHEBYSHEV WINDOW CONSTANT
C XN = NF-1
C
      PI = 4.*ATAN(1.0)
      IF (NF.NE.0) GO TO 10
C
C DP,DF SPECIFIED, DETERMINE NF
C
      C1 = COSHIN((1.+DP)/DP)
      C0 = COS(PI*DF)
      X = 1. + C1/COSHIN(1./C0)
C
C INCREMENT BY 1 TO GIVE NF WHICH MEETS OR EXCEEDS SPECS ON DP AND DF
C
      NF = X + 1.0
      N = (NF+1)/2
      XN = NF - 1
      GO TO 30
  10  IF (DF.NE.0.0) GO TO 20
C
C NF,DP SPECIFIED, DETERMINE DF
C
      XN = NF - 1
      C1 = COSHIN((1.+DP)/DP)
      C2 = COSH(C1/XN)
      DF = ARCCOS(1./C2)/PI
      GO TO 30
C
C NF,DF SPECIFIED, DETERMINE DP
C
  20  XN = NF - 1
      C0 = COS(PI*DF)
      C1 = XN*COSHIN(1./C0)
      DP = 1./(COSH(C1)-1.)
  30  X0 = (3.-COS(2.*PI*DF))/(1.+COS(2.*PI*DF))
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  CHEBY
C DOLPH CHEBYSHEV WINDOW DESIGN
C-----------------------------------------------------------------------
C
      SUBROUTINE CHEBY(NF, W, N, IEO, DP, DF, X0, XN)
C
C  NF = FILTER LENGTH IN SAMPLES
C   W = WINDOW ARRAY OF SIZE N
C   N = HALF LENGTH OF FILTER = (NF+1)/2
C IEO = EVEN-ODD INDICATOR--IEO=0 FOR NF EVEN
C  DP = WINDOW RIPPLE ON AN ABSOLUTE SCALE
C  DF = NORMALIZED TRANSITION WIDTH OF WINDOW
C  X0 = WINDOW PARAMETER RELATED TO TRANSITION WIDTH
C  XN = NF-1
C
      DIMENSION W(1)
      DIMENSION PR(1024), PI(1024)
      PIE = 4.*ATAN(1.0)
      XN = NF - 1
      FNF = NF
      ALPHA = (X0+1.)/2.
      BETA = (X0-1.)/2.
      TWOPI = 2.*PIE
      C2 = XN/2.
      DO 40 I=1,NF
        XI = I - 1
        F = XI/FNF
        X = ALPHA*COS(TWOPI*F) + BETA
        IF (ABS(X)-1.) 10, 10, 20
  10    P = DP*COS(C2*ARCCOS(X))
        GO TO 30
  20    P = DP*COSH(C2*COSHIN(X))
  30    PI(I) = 0.
        PR(I) = P
C
C FOR EVEN LENGTH FILTERS USE A ONE-HALF SAMPLE DELAY
C ALSO THE FREQUENCY RESPONSE IS ANTISYMMETRIC IN FREQUENCY
C
        IF (IEO.EQ.1) GO TO 40
        PR(I) = P*COS(PIE*F)
        PI(I) = -P*SIN(PIE*F)
        IF (I.GT.(NF/2+1)) PR(I) = -PR(I)
        IF (I.GT.(NF/2+1)) PI(I) = -PI(I)
  40  CONTINUE
C
C USE DFT TO GIVE WINDOW
C
      TWN = TWOPI/FNF
      DO 60 I=1,N
        XI = I - 1
        SUM = 0.
        DO 50 J=1,NF
          XJ = J - 1
          SUM = SUM + PR(J)*COS(TWN*XJ*XI) + PI(J)*SIN(TWN*XJ*XI)
  50    CONTINUE
        W(I) = SUM
  60  CONTINUE
      C1 = W(1)
      DO 70 I=1,N
        W(I) = W(I)/C1
  70  CONTINUE
      RETURN
      END
C
C-----------------------------------------------------------------------
C FUNCTION:  COSHIN
C FUNCTION FOR HYPERBOLIC INVERSE COSINE OF X
C-----------------------------------------------------------------------
C
      REAL FUNCTION COSHIN(X)
      COSHIN = ALOG(X+SQRT(X*X-1.))
      RETURN
      END
C
C-----------------------------------------------------------------------
C FUNCTION:  ARCCOS
C FUNCTION FOR INVERSE COSINE OF X
C-----------------------------------------------------------------------
C
      FUNCTION ARCCOS(X)
      IF (X) 30, 20, 10
  10  A = SQRT(1.-X*X)/X
      ARCCOS = ATAN(A)
      RETURN
  20  ARCCOS = 2.*ATAN(1.0)
      RETURN
  30  A = SQRT(1.-X*X)/X
      ARCCOS = ATAN(A) + 4.*ATAN(1.0)
      RETURN
      END
C
C-----------------------------------------------------------------------
C FUNCTION:  COSH
C FUNCTION FOR HYPERBOLIC COSINE OF X
C-----------------------------------------------------------------------
C
      REAL FUNCTION COSH(X)
      COSH = (EXP(X)+EXP(-X))/2.
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  FLCHAR
C SUBROUTINE TO DETERMINE FILTER CHARACTERISTICS
C-----------------------------------------------------------------------
C
      SUBROUTINE FLCHAR(NF, ITYPE, JTYPE, FC, FL, FH, N, IEO, G, OTCD2)
C
C    NF = FILTER LENGTH IN SAMPLES
C ITYPE = WINDOW TYPE
C JTYPE = FILTER TYPE
C    FC = IDEAL CUTOFF OF LP OR HP FILTER
C    FL = LOWER CUTOFF OF BP OR BS FILTER
C    FH = UPPER CUTOFF OF BP OR BS FILTER
C     N = FILTER HALF LENGTH = (NF+1) / 2
C   IEO = EVEN ODD INDICATOR
C     G = FILTER ARRAY OF SIZE N
C OTCD2 = OUTPUT CODE FOR LINE PRINTER USED IN WRITE STATEMENTS
C
      DIMENSION G(1)
      DIMENSION RESP(2048)
      INTEGER OTCD2
C
C NOT FOR FOR TRIANGULAR WINDOW
C
      IF (ITYPE.EQ.2) RETURN
C
C DFT TO GET FREQ RESP
C
      PI = 4.*ATAN(1.0)
C
C UP TO 4096 PT DFT
C
      NR = 8*NF
      IF (NR.GT.2048) NR = 2048
      XNR = NR
      TWN = PI/XNR
      SUMI = -G(1)/2.
      IF (IEO.EQ.0) SUMI = 0.
      DO 20 I=1,NR
        XI = I - 1
        TWNI = TWN*XI
        SUM = SUMI
        DO 10 J=1,N
          XJ = J - 1
          IF (IEO.EQ.0) XJ = XJ + .5
          SUM = SUM + G(J)*COS(XJ*TWNI)
  10    CONTINUE
        RESP(I) = 2.*SUM
  20  CONTINUE
C
C DISPATCH ON FILTER TYPE
C
      GO TO (30, 40, 50, 60), JTYPE
C
C LOWPASS
C
  30  CALL RIPPLE(NR, 1., 0., FC, RESP, F1, F2, DB)
      WRITE (OTCD2,9999) F2, DB
9999  FORMAT (17H PASSBAND CUTOFF , F6.4, 9H  RIPPLE , F8.3, 3H DB)
      CALL RIPPLE(NR, 0., FC, .5, RESP, F1, F2, DB)
      WRITE (OTCD2,9998) F1, DB
9998  FORMAT (17H STOPBAND CUTOFF , F6.4, 9H  RIPPLE , F8.3, 3H DB)
      RETURN
C
C HIGHPASS
C
  40  CALL RIPPLE(NR, 0., 0., FC, RESP, F1, F2, DB)
      WRITE (OTCD2,9998) F2, DB
      CALL RIPPLE(NR, 1., FC, .5, RESP, F1, F2, DB)
      WRITE (OTCD2,9999) F1, DB
      RETURN
C
C BANDPASS
C
  50  CALL RIPPLE(NR, 0., 0., FL, RESP, F1, F2, DB)
      WRITE (OTCD2,9998) F2, DB
      CALL RIPPLE(NR, 1., FL, FH, RESP, F1, F2, DB)
      WRITE (OTCD2,9997) F1, F2, DB
9997  FORMAT (18H PASSBAND CUTOFFS , F6.4, 2X, F6.4, 8H  RIPPLE, F9.3,
     *    3H DB)
      CALL RIPPLE(NR, 0., FH, .5, RESP, F1, F2, DB)
      WRITE (OTCD2,9998) F1, DB
      RETURN
C
C STOPBAND
C
  60  CALL RIPPLE(NR, 1., 0., FL, RESP, F1, F2, DB)
      WRITE (OTCD2,9999) F2, DB
      CALL RIPPLE(NR, 0., FL, FH, RESP, F1, F2, DB)
      WRITE (OTCD2,9996) F1, F2, DB
9996  FORMAT (18H STOPBAND CUTOFFS , F6.4, 2X, F6.4, 8H  RIPPLE, F9.3,
     *    3H DB)
      CALL RIPPLE(NR, 1., FH, .5, RESP, F1, F2, DB)
      WRITE (OTCD2,9999) F1, DB
      RETURN
      END
C
C-----------------------------------------------------------------------
C SUBROUTINE:  RIPPLE
C FINDS LARGEST RIPPLE IN BAND AND LOCATES BAND EDGES BASED ON THE
C POINT WHERE THE TRANSITION REGION CROSSES THE MEASURED RIPPLE BOUND
C-----------------------------------------------------------------------
C
      SUBROUTINE RIPPLE(NR, RIDEAL, FLOW, FHI, RESP, F1, F2, DB)
C
C     NR = SIZE OF RESP
C RIDEAL = IDEAL FREQUENCY RESPONSE
C   FLOW = LOW EDGE OF IDEAL BAND
C    FHI = HIGH EDGE OF IDEAL BAND
C   RESP = FREQUENCY RESPONSE OF SIZE NR
C     F1 = COMPUTED LOWER BAND EDGE
C     F2 = COMPUTED UPPER BAND EDGE
C     DB = DEVIATION FROM IDEAL RESPONSE IN DB
C
      DIMENSION RESP(1)
      XNR = NR
C
C BAND LIMITS
C
      IFLOW = 2.*XNR*FLOW + 1.5
      IFHI = 2.*XNR*FHI + 1.5
      IF (IFLOW.EQ.0) IFLOW = 1
      IF (IFHI.GE.NR) IFHI = NR - 1
C
C FIND MAX AND MIN PEAKS IN BAND
C
      RMIN = RIDEAL
      RMAX = RIDEAL
      DO 20 I=IFLOW,IFHI
        IF (RESP(I).LE.RMAX .OR. RESP(I).LT.RESP(I-1) .OR.
     *      RESP(I).LT.RESP(I+1)) GO TO 10
        RMAX = RESP(I)
  10    IF (RESP(I).GE.RMIN .OR. RESP(I).GT.RESP(I-1) .OR.
     *      RESP(I).GT.RESP(I+1)) GO TO 20
        RMIN = RESP(I)
  20  CONTINUE
C
C PEAK DEVIATION FROM IDEAL
C
      RIPL = AMAX1(RMAX-RIDEAL,RIDEAL-RMIN)
C
C SEARCH FOR LOWER BAND EDGE
C
      F1 = FLOW
      IF (FLOW.EQ.0.0) GO TO 50
      DO 30 I=IFLOW,IFHI
        IF (ABS(RESP(I)-RIDEAL).LE.RIPL) GO TO 40
  30  CONTINUE
  40  XI = I - 1
C
C LINEAR INTERPOLATION OF BAND EDGE FREQUENCY TO IMPROVE ACCURACY
C
      X1 = .5*XI/XNR
      X0 = .5*(XI-1.)/XNR
      Y1 = ABS(RESP(I)-RIDEAL)
      Y0 = ABS(RESP(I-1)-RIDEAL)
      F1 = (X1-X0)/(Y1-Y0)*(RIPL-Y0) + X0
C
C SEARCH FOR UPPER BAND EDGE
C
  50  F2 = FHI
      IF (FHI.EQ.0.5) GO TO 80
      DO 60 I=IFLOW,IFHI
        J = IFHI + IFLOW - I
        IF (ABS(RESP(J)-RIDEAL).LE.RIPL) GO TO 70
  60  CONTINUE
  70  XI = J - 1
C
C LINEAR INTERPOLATION OF BAND EDGE FREQUENCY TO IMPROVE ACCURACY
C
      X1 = .5*XI/XNR
      X0 = .5*(XI+1.)/XNR
      Y1 = ABS(RESP(J)-RIDEAL)
      Y0 = ABS(RESP(J+1)-RIDEAL)
      F2 = (X1-X0)/(Y1-Y0)*(RIPL-Y0) + X0
C
C DEVIATION FROM IDEAL IN DB
C
  80  DB = 20.*ALOG10(RIPL+RIDEAL)
      RETURN
      END
Return to Main Software Page